Journal of Organometallic Chemistry, 355 (1988) 89–98 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Bis(η -cyclopentadienyl)(pentaselenido)metall-Komplexe Cp₂MSe₅ des Ti, Zr, Hf und (μ_2 -O)(μ_2 -Se₄)(Cp₂Hf)₂, eine zweikernige Verbindung mit Se₄- und O-Brücken *

Norbert Albrecht und Erwin Weiss *

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (B.R.D.)

(Eingegangen den 28. April 1988)

Abstract

A facile route to bis(η -cyclopentadienyl)(pentaselenido)metal complexes Cp₂MSe₅ (M = Ti (1), Zr (2), Hf (3)), starting with Cp₂MCl₂ and Li₂Se_x (x ca. 5), is described. 3 is readily oxidized to form the binuclear complex (μ_2 -O)(μ_2 -Se₄)(Cp₂Hf)₂ (4) which has two different chalcogen bridges. The structures of 1-4 have been determined by X-ray crystallography. Despite having different space groups, compounds 1-3, have very similar molecular structures, i.e. MSe₅ rings in the chair conformation. ¹H NMR studies indicate that hindered ring inversions occur. The activation energies for 1 and 2 have been deduced from temperature-dependent spectra.

Zusammenfassung

Eine einfache Synthese für Bis(η -cyclopentadienyl)(pentaselenido)metall-Komplexe Cp₂MSe₅ (M = Ti (1), Zr (2), Hf (3)) aus Cp₂MCl₂ und Li₂Se_x (x ca. 5) wird angegeben. 3 ist leicht oxydierbar unter Bildung des zweikernigen Komplexes (μ_2 -O)(μ_2 -Se₄)(Cp₂Hf)₂ (4) mit zwei verschiedenen Chalkogen-Brücken. Die Strukturen von 1-4 wurden röntgenographisch bestimmt. Trotz verschiedener Raumgruppen haben 1-3 sehr ähnliche Molekülstrukturen mit MSe₅-Ringen in Sessel-Konformation. Nach ¹H-NMR-Untersuchungen erfolgen gehinderte Ringinversionen. Aus den temperaturabhängigen Spektren konnten die Aktivierungsenergien ermittelt werden.

^{*} Herrn Professor Ernst Otto Fischer zum 70. Geburtstag gewidmet.

Seit der ersten Synthese von Cp_2TiS_5 [1] und dessen Anwendung zur Darstellung ungewöhnlicher Schwefel-Ringe S_n (z.B. von S_7 , S_{10} [2]) besteht ein fortdauerndes Interesse [3] an Bis(η -cyclopentadienyl)(pentasulfido)metall-Verbindungen. Das Vorliegen eines TiS₅-Sechsrings in Cp_2TiS_5 wurde schon früh [4] bewiesen; dabei wurden röntgenographisch zwei verschiedene monokline Phasen mit weitgehend übereinstimmenden Molekülparametern gefunden. Die Strukturen der Analogverbindungen Cp_2ZrS_5 und Cp_2HfS_5 wurden erst in neuerer Zeit [5] ermittelt.

An unsere Untersuchungen über chalkogenverbrückte Übergangsmetallverbindungen [6] anknüpfend, befassten wir uns auch mit einigen Selenido-Metallkomplexen [7]. Das schon von Köpf et al. [1b] durch Umsetzung von Cp₂TiCl₂ mit Na₂Se_x erhaltene Bis(η -cyclopentadienyl)(pentaselenido)titan Cp₂TiSe₅ (Ausb. 87%) eignet sich für die Synthese von cyclo-Selen Se_n (z.B. n = 7) oder cyclo-Selensulfiden (z.B. Se₅S, Se₅S₂ [8]). Es wurde später [9] auf einem präparativ einfacheren Weg auch aus Cp₂TiCl₂ und Li₂Se_x dargestellt. Ohne Kenntnis dieser Arbeiten stellten wir in gleicher Weise sowohl Cp₂TiSe₅, zusätzlich aber auch die analogen Zirkonund Hafnium-Verbindungen her [7]:

$$Cp_2MCl_2 + Li_2Se_x → Cp_2MSe_5 + 2 LiClM = Ti: 1 (89%)Zr: 2 (48%)Hf: 3 (55%)$$

Da die Ausgangsverbindungen Cp_2ZrCl_2 und Cp_2HfCl_2 wasser- und luftempfindlich sind, muß man wasserfreie Polyselenid-Lösungen einsetzen. Diese lassen sich aus käuflichem LiBHEt₃ ("Super-Hydride") und elementarem Chalkogen in THF rasch und bequem darstellen [10]:

2 LiBHEt₃ +
$$E_x \rightarrow Li_2E_x + 2 BEt_3 + H_2$$

(E = S [10a], Se [10b], Te, x = 1-5)

Dieses Verfahren bietet daher erhebliche Vorteile gegenüber der erstgenannten Methode. Neuerdings wurde auch die Darstellung von Cp_2TiSe_5 aus Cp_2TiCl_2 und Trimethyltetradecylammonium-polyselenid beschrieben [11].

Obgleich hier und auch bei Verwendung von Na₂E_x bzw. Li₂E_x die eingesetzten Polychalkogenide nur annähernd den Zusammensetzungen mit x = 5 entsprechen, werden ausschließlich die Pentasulfido- bzw. -Pentaselenido-Komplexe erhalten. Während also bei den metallfreien cyclo-Chalkogenen (z.B. α -S₈ oder α -Se₈) der Achtring am stabilsten ist, sind bei den Metalla-Derivaten die Sechsringe als besonders spannungsfreie Systeme bevorzugt.

Bei der Darstellung von 3 aus Cp_2HfCl_2 und Li₂Se_x erhielten wir unerwartet ein weiteres Produkt 4, welches sich röntgenographisch als eine zweikernige Hf-Verbindung mit einer Tetraselenido- und einer Oxo-Brücke erwies. Wahrscheinlich ist die Bildung von 4 auf die Anwesenheit geringer Wassermengen entweder bei der Darstellung oder bei der Aufarbeitung zurückzuführen. Es wurde auch beobachtet, daß 3 bei Luftzutritt langsam in 4 übergeht. Die Metalle der IV. Nebengruppe sind für ihre Oxophilie bekannt; sie nimmt in der Reihenfolge Ti-Zr-Hf zu. Weitere Beispiele oxoverbrückter Metallocene sind die Verbindungen (μ_2 -O)[Cp₂Ti]₂ [12a], (μ_2 -O)[Cp₂TiCl]₂ [12b], (μ_2 -O)[Cp₂ZrCl]₂ [12c] und (μ_2 -O)[Cp₂HfMe]₂ [12d].

Röntgenographische Untersuchungen

Von allen Pentaselenido-Komplexen 1-3 sowie der Zweikern-Verbindung 4 wurden röntgenographisch die Kristallstrukturen ermittelt [7]. Unabhängig davon publizierten Dehnicke et al. [11] inzwischen die Struktur von 1 mit nahezu identischen Ergebnissen.

Einkristalle von 1–4 wurden durch Abkühlen von gesättigten Lösungen der Substanzen in Chloroform auf – 30°C erhalten und in Lindemann-Röhrchen unter Ar-Schutz präpariert. Die Messungen erfolgten mit einem Syntex P2₁-Vierkreisdiffraktometer (Mo- K_{α} -Strahlung, Graphitmonochromator, $\theta/2\theta$ -Scan). Die Strukturen wurden mittels Patterson-Synthesen gelöst (Programm SHELXS [13]) und die Nichtwasserstoff-Atome mit anisotropen Temperaturfaktoren verfeinert (Programm SHELX [14]). H-Atome wurden nur bei 1 und 2 (mit gemeinsamen isotropen Temperaturfaktoren) berücksichtigt; die C–H-Bindungslängen waren dabei auf 96 pm fixiert.

Kristalldaten von 1 ($C_{10}H_{10}Se_5Ti$)

Triklin, Raumgruppe $P\overline{1}$, a 813.5(3), b 827.5(4), c 1198.2(7) pm, α 96.21(4), β 106.18(4), γ 108.93(3)°, V 715 \cdot 10⁶ pm³, Z = 2, d_{ber} 2.661 g cm⁻³, linearer Absorptionskoeffizient μ 129.5 cm⁻¹, vermessener Kristall 0.14 \times 0.19 \times 0.06 cm, numerische Absorptionskorrektur, Messungen bis θ = 30°; 4652, davon 2283 signifikante und symmetrieunabhängige Reflexe mit $F_0 > 4\sigma(F_0)$. F(000) = 524, Reflex/Parameter-Verhältnis 15.6, R = 0.059, $R_w = 0.064$.

Kristalldaten von 2 ($C_{10}H_{10}Se_5Zr$)

Monoklin, Raumgruppe $P2_1/c$, a 1330.2(2), b 840.0(1), c 1417.9(3) pm, β 113.51(1)°, V 1453 · 10⁶ pm³, Z = 4, d_{ber} 2.817 g cm⁻³, linearer Absorptionskoeffizient μ 128.7 cm⁻¹, vermessener Kristall 0.16 × 0.20 × 0.13 cm, keine numerische Absorptionskorrektur, da etwa sphärischer Kristall, Messungen bis $\theta = 25^{\circ}$; 2968, davon 2283 signifikante und symmetrieunabhängige Reflexe mit $F_0 > 4\sigma(F_0)$. F(000) = 1120, Reflex/Parameter-Verhältnis 13.4, R = 0.059, $R_w = 0.055$.

Kristalldaten von 3 ($C_{10}H_{10}Se_5Hf$)

Monoklin, Raumgruppe $P2_1/n$, a 936.7(4), b 1366.2(4), c 1165.3(5) pm, β 93.93(4)°, V 1488 · 10⁶ pm³, Z = 4, d_{ber} 3.140 g cm⁻³, linearer Absorptionskoeffizient μ 186 cm⁻¹, vermessener Kristall 0.10 × 0.05 × 0.10 cm, numerische Absorptionskorrektur, Messungen bis $\theta = 30^\circ$; 3038, davon 2082 signifikante und symmetrieunabhängige Reflexe mit $F_0 > 4\sigma(F_0)$. F(000) = 1248, Reflex/Parameter-Verhältnis 13.7, R = 0.063, $R_w = 0.071$.

Kristalldaten von **4a** $(C_{20}H_{20}Se_4OHf_2 \cdot CHCl_3)$

Orthorhombisch, Raumgruppe Pbca, a 1550.7(11), b 1756.2(13), c 1958.8(11) pm, V 5334 $\cdot 10^6$ pm³, Z = 8, d_{ber} 2.555 g cm⁻³, linearer Absorptionskoeffizient μ 130 cm⁻¹, vermessener Kristall 0.24 \times 0.24 \times 0.24 cm, numerische Absorptionskorrektur, Messungen bis θ = 25°; 5426, davon 2960 signifikante und symmetrieunabhängige Reflexe mit $F_0 > 4\sigma(F_0)$. F(000) = 3888, Reflex/Parameter-Verhältnis 11.0, R = 0.086, $R_w = 0.069$.

Fig. 1. SCHAKAL-Darstellung von Cp₂MSe₅ (M = Ti, Zr, Hf).

Kristalldaten von **4b** $(C_{20}H_{20}Se_4OHf_2 \cdot CH_3COCH_3)$

Orthorhombisch, Raumgruppe Pbca, a 1522.3(9), b 1711.1(15), c 1991.9(12) pm, $V 51.88 \cdot 10^6$ pm³, Z = 8, $d_{ber} 2.577$ g cm⁻³, linearer Absorptionskoeffizient μ 131 cm⁻¹, vermessener Kristall $0.10 \times 0.10 \times 0.06$ cm, numerische Absorptionskorrek-

Tabelle 1

Atomkoordinaten und Temperaturfaktoren $U_{eo} \cdot 10^{-3}$ (U_{iso} für H-Atome) für Cp₂TiSe₅ (1)

-	-	~~ ···	150		
Atom	x/a	у/b	z/c	U_{eq}	
Ti	1.0182(3)	0.7667(3)	0.2792(2)	0.023(1)	
Se(1)	0.8076(2)	0.6078(2)	0.3919(1)	0.042(1)	
Se(2)	0.5153(2)	0.4345(2)	0.2511(2)	0.051(1)	
Se(3)	0.5795(2)	0.2056(2)	0.1613(2)	0.046(1)	
Se(4)	0.7326(2)	0.3225(2)	0.0316(1)	0.040(1)	
Se(5)	1.0280(2)	0.4878(2)	0.1699(1)	0.033(1)	
C(11)	0.956(2)	1.017(2)	0.234(1)	0.051(10)	
C(12)	1.026(2)	0.963(2)	0.148(1)	0.049(9)	
C(13)	0.897(2)	0.796(2)	0.079(1)	0.040(8)	
C(14)	0.749(2)	0.751(2)	0.125(1)	0.043(8)	
C(15)	0.788(2)	0.890(2)	0.219(1)	0.055(9)	
C(21)	1.315(2)	0.982(2)	0.368(2)	0.059(13)	
C(22)	1.341(2)	0.826(3)	0.340(1)	0.055(14)	
C(23)	1.272(2)	0.715(2)	0.411(1)	0.045(9)	
C(24)	1.209(2)	0.801(2)	0.483(1)	0.044(10)	
C(25)	1.232(2)	0.967(2)	0.461(1)	0.049(10)	
H(11)	1.016(2)	1.124(2)	0.293(1)	0.081(19)	
H(12)	1.140(2)	1.027(2)	0.137(1)	0.081(9)	
H(13)	0.908(2)	0.727(2)	0.014(1)	0.081(19)	
H(14)	0.642(2)	0.644(2)	0.098(1)	0.081(19)	
H(15)	0.710(2)	0.896(2)	0.265(1)	0.081(19)	
H(21)	1.347(2)	1.081(2)	0.333(2)	0.081(19)	
H(22)	1.395(2)	0.799(3)	0.283(1)	0.081(19)	
H(23)	1.270(2)	0.598(2)	0.409(1)	0.081(19)	
H(24)	1.157(2)	0.753(2)	0.540(1)	0.081(19)	
H(25)	1.199(2)	1.053(2)	0.499(1)	0.081(19)	

Atom	x/a	y/b	z/c	U_{eq}		
Zr(1)	0.2351(1)	0.1846(2)	0.1646(1)	0.030(1)		
Se(1)	0.1050(1)	0.0739(2)	0.2514(1)	0.042(1)		
Se(2)	0.1584(1)	-0.1911(2)	0.2900(1)	0.050(1)		
Se(3)	0.3295(1)	-0.1732(2)	0.4267(1)	0.050(1)		
Se(4)	0.4505(1)	-0.1056(2)	0.3532(1)	0.048(1)		
Se(5)	0.4259(1)	0.1696(2)	0.3256(1)	0.039(1)		
C(11)	0.161(2)	0.096(2)	-0.018(1)	0.057(13)		
C(12)	0.272(1)	0.135(2)	0.009(1)	0.052(11)		
C(13)	0.333(1)	0.028(2)	0.079(1)	0.051(10)		
C(14)	0.263(2)	-0.079(2)	0.095(1)	0.058(14)		
C(15)	0.154(2)	-0.040(2)	0.037(1)	0.060(12)		
C(21)	0.166(2)	0.440(2)	0.071(1)	0.077(20)		
C(22)	0.272(2)	0.467(2)	0.144(3)	0.134(35)		
C(23)	0.268(2)	0.458(2)	0.241(2)	0.078(19)		
C(24)	0.158(2)	0.420(2)	0.224(2)	0.098(25)		
C(25)	0.105(1)	0.411(2)	0.124(2)	0.059(15)		
H(11)	0.099(2)	0.152(2)	-0.067(1)	0.071(17)		
H(12)	0.300(1)	0.222(2)	-0.018(1)	0.071(17)		
H(13)	0.412(1)	0.026(2)	0.112(1)	0.071(17)		
H(14)	0.286(2)	-0.168(2)	0.141(1)	0.071(17)		
H(15)	0.090(2)	-0.093(2)	0.035(1)	0.071(17)		
H(21)	0.143(2)	0.442(2)	-0.003(1)	0.071(17)		
H(22)	0.336(2)	0.489(2)	0.132(3)	0.071(17)		
H(23)	0.327(2)	0.473(2)	0.307(2)	0.071(17)		
H(24)	0.127(2)	0.404(2)	0.274(2)	0.071(17)		
H(25)	0.028(1)	0.386(2)	0.091(2)	0.071(17)		

Atomkoordinaten und Temperaturfaktoren	$U_{eq} \cdot 10^{-3}$	(U _{iso} für I	H-Atome) für	Cp ₂ ZrSe ₅	(2)

tur, Messungen bis $\theta = 25^{\circ}$; 3419, davon 1176 signifikante und symmetrieunabhängige Reflexe mit $F_0 > 4\sigma(F_0)$. F(000) = 3680, Reflex/Parameter-Verhältnis 13.5, R = 0.12, $R_w = 0.12$.

Die Tabellen 1-4 enthalten die resultierenden Atomkoordinaten und Temperaturfaktoren *; Figur 1 zeigt eine SCHAKAL-Darstellung [15] der Moleküle mit Angaben der Atomnummerierungen.

Strukturbeschreibung

Tabelle 2

Bis(n-cyclopentadienyl)(pentaselenido)metall-Komplexe

Wie erwartet besitzen die Verbindungen 1-3 die in Fig. 1 dargestellte Struktur mit einer Sesselkonformation des MSe_5 -Ringes. Ein Vergleich der wesentlichen Bindungsabstände und -winkel (Tab. 5) zeigt besonders für die MSe_5 -Einheit weitgehende Übereinstimmung, speziell bei den Verbindungen 2 und 3. Bekanntlich unterscheiden sich die Kovalenz- und Ionenradien von Zr und Hf wegen der Lanthanidenkontraktion nur wenig.

^{*} Die vollständigen Datensätze wurden beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2 unter der Nr. CSD-53096 hinterlegt und können dort unter Angabe der Hinterlegungsnummer, der Autoren und des Zeitschriftenzitats angefordert werden.

Atom	x/a	y/b	z/c	Ueq
Se(1)	0.2647(2)	0.2169(1)	0.7695(2)	0.050(1)
Se(2)	0.1120(2)	0.3518(2)	0.7826(2)	0.057(1)
Se(3)	0.0718(2)	0.4041(2)	0.5932(2)	0.056(1)
Se(4)	0.2783(2)	0.4931(1)	0.5568(2)	0.048(1)
Se(5)	0.4390(2)	0.3668(1)	0.5224(2)	0.038(1)
Hf	0.5141(1)	0.2958(1)	0.7273(1)	0.038(1)
C(11)	0.642(3)	0.357(2)	0.907(2)	0.073(2)
C(12)	0.690(2)	0.412(2)	0.814(2)	0.060(1)
C(13)	0.582(2)	0.469(1)	0.775(2)	0.050(1)
C(14)	0.464(3)	0.447(1)	0.836(2)	0.057(2)
C(15)	0.502(3)	0.377(2)	0.918(2)	0.057(2)
C(21)	0.732(3)	0.202(2)	0.709(3)	0.083(2)
C(22)	0.670(4)	0.209(2)	0.595(2)	0.083(3)
C(23)	0.549(3)	0.151(2)	0.597(2)	0.077(2)
C(24)	0.536(4)	0.116(1)	0.705(3)	0.083(3)
C(25)	0.650(3)	0.145(2)	0.771(2)	0.060(2)

Tabelle 3	
Atomkoordinaten und Temperaturfaktoren U_{eq} ·10 ⁻³ für Cp ₂ HfSe ₅ (3)

Tabelle 4

Atomkoordinaten und	Temperaturfaktoren	$U_{\rm eq} \cdot 10^{-3}$	für	Cp ₄ Hf ₂	OSe₄∙	CHCl ₃	(4 a)

Atom	x/a	у/b	z/c	U _{eq}
Hf(1)	0.5299(1)	0.3434(1)	0.9100(1)	0.038(1)
Hf(2)	0.6472(1)	0.2007(1)	0.7916(1)	0.038(1)
Se(1)	0.6680(3)	0.3602(3)	0.9905(2)	0.051(4)
Se(2)	0.7726(3)	0.4182(3)	0.9220(2)	0.055(4)
Se(3)	0.8463(3)	0.3226(3)	0.8644(2)	0.059(5)
Se(4)	0.7713(3)	0.3009(3)	0.7615(2)	0.055(4)
0	0.576(2)	0.267(2)	0.849(1)	0.050(25)
C(1)	0.560(3)	0.481(2)	0.880(2)	0.039(12)
C(2)	0.570(3)	0.439(2)	0.823(2)	0.043(12)
C(3)	0.493(2)	0.413(2)	0.801(2)	0.039(11)
C(4)	0.431(3)	0.436(3)	0.850(2)	0.055(14)
C(5)	0.477(2)	0.480(2)	0.900(2)	0.034(10)
C(6)	0.501(3)	0.250(3)	1.005(3)	0.074(17)
C(7)	0.454(3)	0.230(3)	0.956(3)	0.087(19)
C(8)	0.391(3)	0.284(3)	0.943(2)	0.064(15)
C(9)	0.408(3)	0.343(3)	0.991(2)	0.058(14)
C(10)	0.470(3)	0.322(2)	1.030(2)	0.046(12)
C(11)	0.645(4)	0.216(3)	0.666(2)	0.066(14)
C(12)	0.622(3)	0.141(3)	0.676(2)	0.041(12)
C(13)	0.544(2)	0.139(2)	0.712(2)	0.038(11)
C(14)	0.519(3)	0.218(2)	0.713(2)	0.054(13)
C(15)	0.581(2)	0.264(2)	0.687(2)	0.033(11)
C(16)	0.773(4)	0.127(3)	0.844(2)	0.083(18)
C(17)	0.724(3)	0.075(3)	0.810(3)	0.076(17)
C(18)	0.642(4)	0.064(3)	0.833(2)	0.070(15)
C(19)	0.639(3)	0.111(3)	0.888(2)	0.059(14)
C(20)	0.713(3)	0.150(3)	0.896(2)	0.057(13)
С	0.124(2)	0.000(4)	0.419(4)	0.09(2)
Cl(1)	0.027(1)	0.048(1)	0.418(1)	0.11(1)
Cl(2)	0.135(2)	-0.061(1)	0.355(1)	0.14(1)
Cl(3)	0.203(2)	0.068(2)	0.415(2)	0.17(1)

Atome	Cp2TiSe5	Cp ₂ ZrSe ₅	Cp ₂ HfSe ₅
M-Se(1)	258.8(2)	265.9(2)	265.0(2)
M-Se(5)	256.4(2)	265.4(2)	262.8(2)
Se(1)-Se(2)	236.3(2)	233.5(2)	234.5(3)
Se(2)-Se(3)	235.2(2)	233.2(2)	232.6(3)
Se(3)-Se(4)	234.9(2)	231.1(2)	234.8(3)
Se(4)-Se(5)	235.5(2)	234.5(2)	234.2(3)
$M-Cp(1)^{a}$	206.5(3)	220.6(1)	219.3(1)
$M-Cp(2)^{a}$	207.6(3)	220.2(1)	218.8(1)
Se(1)-M-Se(5)	95.4(1)	99.3(1)	97.7(1)
M-Se(1)-Se(2)	108.4(1)	104.4(1)	104.0(1)
M-Se(5)-Se(4)	108.6(1)	102.2(1)	104.6(1)
Se(1) - Se(2) - Se(3)	101.3(1)	103.8(1)	103.8(1)
Se(2)-Se(3)-Se(4)	105.6(1)	105.4(1)	104.4(1)
Se(3) - Se(4) - Se(5)	100.0(1)	104.0(1)	101.3(1)
$Cp(1)-M-Cp(2)^{b}$	49.7(1)	51.8(1)	51.6(1)

Tabelle 5 Ausgewählte Bindungslängen (pm) und -winkel (°) für 1-3

^a Abstand zum Mittelpunkt des Cp-Ringes. ^b Winkel zu den Mittelpunkten der Cp-Ringe.

Es ist bemerkenswert, daß bei weitestgehender Ähnlichkeit der Moleküle ihre Packungen im Kristall doch so stark differieren, daß jede Verbindung in einer anderen Raumgruppe kristallisiert. Ähnliche Beobachtungen wurden bereits bei Cp_2TiS_5 gemacht [4b].

Eine Vorstellung von der kompakten Molekülgestalt vermittelt die Fig. 2 am Beispiel von 1. Die hauptsächlichen Unterschiede von 2 und 3 im Vergleich zu 1 beruhen in deren um etwa 12 pm größeren M-Cp-Abständen. Bei den M-Se-Abständen ist der Effekt geringer (Mittelwerte Ti-Se 257.6, Zr-Se 265.6, Hf-Se 263.9 pm).

Die Metall-Selen-Abstände lassen sich als Einfachbindungen beschreiben, im Gegensatz zum sehr kurzen V-Se-Abstand (229.7 pm) in μ -Se[V(CO)₃dppe]₂, der hier eindeutig auf Mehrfach-Bindungsanteilen zurückzuführen ist [6a]. Se-Se-Abstände und Se-Se-Se-Winkel sind normal; sie entsprechen weitgehend den Werten der verschiedenen Se₈-Modifikationen [16]. Auf die ausführlichere Struk-

Fig. 2. SCHAKAL-Darstellung von Cp2TiSe5 (Kalottenmodell mit van der Waals-Radien).

Hf(1)-Se(1)	267.5(5)	Hf(1)-Cp(1)	223.2(2)
Hf(2)-Se(4)	267.4(5)	Hf(1)-Cp(2)	221.8(2)
Se(1)-Se(2)	233.8(7)	Hf(2)-Cp(3)	221.5(2)
Se(2)-Se(3)	232.3(7)	Hf(2)-Cp(4)	221.8(2)
Se(3)-Se(4)	235.8(8)	Hf(1)O	193(3)
		Hf(2)-O	196(3)
Hf(1)-Se(1)-Se(2)	105.4(2)	Hf(1)-O-Hf(2)	167.4(17)
Hf(2)-Se(4)-Se(3)	105.8(2)	O-Hf(1)-Se(1)	98.2(8)
Se(1)-Se(2)-Se(3)	107.7(3)	O-Hf(2)-Se(4)	98.1(9)
Se(2) - Se(3) - Se(4)	106.8(3)	Cp(1)-Hf(1)-Cp(2)	52.0(2)
		Cp(3) - Hf(2) - Cp(4)	50.9(2)

Ausgewählte Bindungslängen (pm) und Winkel (°) für 4a

turdiskussion für Cp_2TiSe_5 bei [11] wird verwiesen. NMR-Untersuchungen zur Stabilität der MSe₅-Ringe im gelösten Zustand werden anschließend beschrieben.

Tetra(di- η^{5} -cyclopentadienyl)(μ_{2} -oxo)(μ_{2} -tetraselenido)dihafnium (4)

Diese Verbindung wurde sowohl aus Chloroform als auch aus Aceton umkristallisiert und dabei zwei verschiedene Solvate erhalten: $Cp_4Hf_2OSe_4 \cdot CHCl_3$ (4a) und $Cp_4Hf_2OSe_4 \cdot CH_3COCH_3$ (4b). Beide kristallisieren in der gleichen Raumgruppe Pbca mit etwas unterschiedlichen Zellparametern. Es werden hier ausführlicher nur die genaueren Ergebnisse für 4a mitgeteilt; Einzelheiten zur Struktur von 4b [7] wurden hinterlegt (siehe Fußnote) und sind auf Anfrage erhältlich.

Bemerkenswert für 4 ist die Überbrückung zweier Metallocene durch zwei unterschiedliche Chalkogen-Fragmente. Während μ_2 -Oxo-Brücken, wie bereits erwähnt, häufiger gefunden werden, ist die Se₄-Brücke in 4 der bisher größte Polyselenido-Brückenligand. Die Se-Se-Se-Winkel sind zwar etwas größer als in 1-3, mit jenen aber durchaus vergleichbar. Ähnliches gilt für die Hf-Se-Se-Winkel. Somit sind das MSe₅- und das Hf₂OSe₄-System trotz unterschiedlicher Ringgröße weitgehend spannungsfrei.

NMR-Spektroskopische Untersuchungen an Cp_2MSe_5 (M = Ti, Zr, Hf)

Bald nach der Erstsynthese von Cp_2TiS_5 wurde festgestellt [1b], daß die ¹H-NMR-Daten temperaturabhängig sind. Bei Raumtemperatur beobachtet man zwei scharfe Signale, welche bei etwa 363 K koaleszieren und bei 393 K in ein scharfes Einzelsignal übergehen. Demnach liegt eine gehinderte Ringinversion zwischen zwei Sesselkonformationen vor, die durch Erwärmen angeregt wird. Für die Inversion in Cp_2TiS_5 ermittelten Abel et al. [17] aus Koaleszenztemperatur und Signal-Linienbreite die genauen Aktivierungsparameter; sie fanden für die Aktivierungsenergie einen Wert $E_a = 69.1 \pm 2.3$ kJ mol⁻¹.

Auch Cp₂TiSe₅ (1) zeigt ein analoges Verhalten [1b], doch konnte der Koaleszenzpunkt bisher noch nicht ermittelt werden, da 1 oberhalb 100°C irreversibel mit dem als Lösungsmittel verwendeten Me₂S₂ reagierte. Bei Verwendung von Toluol- d_6 als Lösungsmittel konnten wir nun die Koaleszenz der NMR-Signale für 1 bei etwa 365 K beobachten (Fig. 3).

Tabelle 6

Fig. 3. ¹H-NMR-Spektren von Cp_2MSe_5 (M = Ti, Zr) bei unterschiedlichen Meßtemperaturen (K).

Demnach zeigen Cp₂ZrSe₅ (2) und Cp₂HfSe₅ (3) in Lösung (CDCl₃) bereits bei Raumtemperatur rasche Ringinversion, da nur ein Signal beobachtet wird. Beim Abkühlen auf 220 K erfolgt bei 3 noch keine Signalaufspaltung. Das ¹H-NMR-Signal der Zr-Verbindung spaltet jedoch unterhalb 240 K auf. Aus diesen Werten lassen sich folgende Ringinversionsenergien $\Delta G_T^{\#}$ abschätzen: 75 kJ mol⁻¹ (1) und 55 kJ mol⁻¹ (2).

Experimenteller Teil

Darstellung von Cp_2TiSe_5 (1), Cp_2ZrSe_5 (2) und Cp_2HfSe_5 (3) aus Cp_2MCl_2 und Na_2Se_x (x ca. 5) (nach [1b], für M = Ti optimierte Synthese)

Unter N₂-Schutz tropft man zu einer Lösung von 2.0 mmol (0.50 g) Cp₂TiCl₂ in 15 ml Aceton die Suspension von 2.0 mmol (0.88 g) Na₂Se_x in 15 ml THF und rührt bei 20 °C 30 min lang. Das filtrierte Reaktionsgemisch wird im Vakuum zur Trockne eingeengt und mit mehreren Portionen Chloroform extrahiert. Die vereinigten Extrakte werden bis auf ca. 20 ml eingeengt und bei -30 °C auskristallisiert. Ausb. an **1** 1.0 g (89%), dunkelviolette Kristalle, Schmp. 213 °C. Gef.: C, 21.2; H, 1.7; Se, 67.2; Ti, 8.4. C₁₀H₁₀Se₅Ti (572.9) ber.: C, 20.98; H, 1.76; Se, 68.90; Ti, 8.36%.

Die Zr-Verbindung 2 wurde in analoger Weise aus Cp_2ZrCl_2 (2.0 mol, 0.59 g) und Na_2Se_x (2.0 mol, 0.88 g) in 40 ml THF dargestellt. Die farblose Lösung färbt sich dabei langsam gelborange (Reaktionszeit 14 h). Ausb. 0.59 g (48%), dunkelorange Blättchen, Schmp. 203°C.

Analog erhält man 3 aus Cp_2HfCl_2 (0.92 mmol, 0.35 g) und Na_2Se_x (0.92 mmol, 0.41 g) in 30 ml THF. Ausb. 40%, orange Kristalle, Schmp. > 260°C.

Darstellung von Cp_2ZrSe_5 (2) aus Cp_2ZrCl_2 und Li_2Se_x

Aus 6 ml einer 1 M LiBHEt₃-Lösung in THF ("Super-Hydride", Fa. Aldrich) und 1.19 g (15.0 mmol) grauem Se-Pulver stellt man zunächst eine Li₂Se_x-Lösung

her (x ca. 5), zu der man 0.88 g (3.0 mmol) $Cp_2 ZrCl_2$ in 40 ml THF hinzufügt. Man rührt noch 2 h, engt zur Trockene ein, extrahiert zweimal mit je 10 ml CHCl₃ und kühlt zur Kristallisation auf -30 °C. Ausb. an 2 1.10 g (60%).

Darstellung von $Cp_{2}HfSe_{5}$ (3) und $Cp_{4}Hf_{2}OSe_{4}$ (4) aus $Cp_{2}HfCl_{2}$ und $Li_{2}Se_{x}$

0.35 g (0.92 mmol) Cp₂HfCl₂ versetzt man mit einer Lösung von Li₂Se_x, dargestellt aus 0.37 g (4.6 mmol) grauem Se-Pulver und 1.95 ml einer 1 *M* LiBHEt₃-Lösung in THF. Es erfolgt eine Farbänderung von dunkelbraun nach gelbbraun. Nach 6 h wird bei verm. Druck zur Trockne eingeengt und der Rückstand zweimal mit je 10 ml CHCl₃ extrahiert. Nach Abkühlen auf -30° C kristallisieren 0.38 g des Gemisches von 3 und 4. Hellgelbe Kristalle von 4 wurden für die Röntgenstrukturanalyse entnommen. Extraktion des Produkts mit CH₂Cl₂ ergab 3. Ausb. 0.37 g (55%).

Dank

Wir danken Herrn Dr. J. Kopf für die Messung der Einkristalle und die Hilfe bei der Absorptionskorrektur sowie dem Fonds der Chemischen Industrie für Personalund Sachmittel.

Literatur

- 1 (a) E. Samuel, Bull. Soc. Chim. Fr., (1966) 3548, (b) H. Köpf, B. Block und M. Schmidt, Chem. Ber., 101 (1968) 272.
- 2 H. Schmidt, B. Block, H.D. Block, H. Köpf und E. Wilhelm, Angew. Chem., 80 (1968) 660; Angew. Chem. Int. Ed. Engl., 7 (1968) 632.
- 3 M. Draganjac und T.B. Rauchfuss, Angew. Chem., 97 (1985) 745; Angew. Chem. Int. Ed. Engl., 24 (1985) 632.
- 4 (a) E.F. Epstein, I. Bernal und H. Köpf, J. Organomet. Chem., 26 (1971) 229; (b) E.G. Muller, J.L. Petersen und L.F. Dahl, J. Organomet. Chem., 111 (1976) 91.
- 5 A. Shaver, J.M. McCall, V.W. Day und S. Vollmer, Can. J. Chem., 65 (1987) 1676.
- 6 (a) J. Schiemann, P. Hübener und E. Weiss, Angew. Chem., 95 (1983) 1021; Angew. Chem. Int. Ed. Engl., 22 (1983) 980; (b) N. Albrecht, P. Hübener, U. Behrens und. E. Weiss, Chem. Ber., 118 (1985) 4059.
- 7 N. Albrecht, Dissertation Universität Hamburg 1986.
- 8 R. Steudel, M. Papavassiliou, E.-M. Strauss und R. Laitinen, Angew. Chem., 98 (1986) 81; Angew. Chem. Int. Ed. Engl., 25 (1986) 99.
- 9 A. Shaver und J.M. McCall, Organometallics, 3 (1984) 1823.
- 10 (a) J.A. Gladysz, V.K. Wong und B.S. Kick, Tetrahedron, 2 (1979) 2329; (b) J.A. Gladysz, J.L. Hornby und J.E. Garbe, J. Org. Chem., 43 (1978) 1204.
- 11 D. Fenske, J. Adel und K. Dehnicke, Z. Naturforsch. B, 42 (1987) 931.
- 12 (a) B. Honold, U. Thewaldt, M. Herberhold, H.G. Alt, L.B. Kool und M.D. Rausch, J. Organomet. Chem., 314 (1986) 105; (b) Y. LePage, J.D. McCowan, B.K. Hunter und R.D.J. Heyding, J. Organomet. Chem., 193 (1980) 201; (c) J.F. Clarke und M.G.B. Drew, Acta Cryst., B30 (1974) 2267; (d) F.R. Fronczek, E.C. Baker, P.R. Sharpe, K.N. Raymond, H.G. Alt und M.D. Rausch, Inorg. Chem., 15 (1976) 2284.
- 13 G.M. Sheldrick, SHELXS-84, Programs for Crystal Structure Solution, Universität Göttingen 1984.
- 14 G.M. Sheldrick, SHELX, Porgrams for Crystal Structure Determination, University Cambridge 1975.
- 15 E. Keller, SCHAKAL, Ein Fortran-Programm für die graphische Darstellung von Molekülmodellen, Universität Freiburg, 1981.
- 16 R. Steudel und E.-M. Strauss, Adv. Inorg. Chem. Radiochem., 28 (1984) 135.
- 17 E.W. Abel, M. Booth und K.G. Orrell, J. Organomet. Chem., 160 (1978) 75.